Organic Hoophouse Fertility Challenges

Anu Rangarajan
Cornell University
Dept. of Horticulture
Unique factors important to managing hoop houses

- Season extension = Longer season
 - unheated
- Producing during ‘off-season’
- Longer period requiring fertility
- Minimum rotation or rest periods
- Highly diverse crop mix
- Intensive management to maximize profit per square foot
- Water efficiency high
Unique challenges related to Hoophouse Fertility

- Nitrate accumulation in winter grown greens
- Salt buildup in soils
- Soil pests- Garden symphyllan- similar plant symptoms to salt damage
Fertility Approaches

- Add compost to build soil OM levels to 10-15%
- Add additional minerals, based on soil tests
- Occasionally incorporate green manures and cover crops
 - Particularly prior to establishing a hoophouse site
- Liquid feeds and sidedressing with other nutrient sources
Compost Amendment

- Increase soil OM to 10%
 - Start with high rates of compost application
 - 1 inch on surface
 - 30 yards/1000 sq ft
 - Decrease rates in subsequent years
 - At 15% OM, problems with soil pest have been observed

- Compost quality
 - Animal-waste based compost higher EC than plant based composts
 - Avoid immature composts- ammonia gassing off
Organic Greenhouse Tomato Growers, Canada

- 6.5 cu ft/100 sq ft added every 5-6 weeks
- Straw mulched after each application
- Repeat 5-6 times during season
- Rates reduced after two years
- OM levels range from 10-15% to 30% in beds
Steve Moore’s Fertility Approach

- Start with 28 cu ft/100 sq ft to build fertility
 - 30 yds in 30 x 96 greenhouse
 - About 3” compost worked into soil 12 inches
- Reduce rate to 3-4 cu ft/100 sq ft after two years
- Animal based compost initially, then shifts to plant based composts
 - Avoid soil salt build up
- Other amendments: fish or kelp, only 5-8 oz per year
- Carefully monitor soil EC
- Penn State research found that half the initial rate (1.5 inch layer) supported similar yields to higher rate (3 inch layer) with reduced salt levels
Dave Colson

- Compost made on farm
- Supplement, based on soil test, with Bloodmeal, Sulpomag and Colloidal P
- Recent salt problems in hoophouses
 - Adding Gypsum, to reduce salt levels in houses. Calcium will displace Na and cations in soil
 - Leaching one house per year, by removing covers over winter
Monitoring Electrical Conductivity

- Soluble salts (K, Na, Cl, NO3, NH4)
- Symptoms of high EC - restricted water uptake and wilting, restricted root growth, poor germination, marginal burning on foliage, reduced flowering and yields
- Saturated paste, 1:2 dilution or 1:5 dilution, based upon dry wt soil
EC levels

<table>
<thead>
<tr>
<th>Saturated Paste</th>
<th>1:2 dilution</th>
<th>1:5 dilution</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.7</td>
<td>0-0.25</td>
<td>0-0.12</td>
<td>Very low</td>
</tr>
<tr>
<td>.7-2.0</td>
<td>0.25-0.75</td>
<td>0.12-0.35</td>
<td>Good for germination</td>
</tr>
<tr>
<td>2.0-3.5</td>
<td>0.75-1.25</td>
<td>0.35-0.65</td>
<td>Desirable for growth</td>
</tr>
<tr>
<td>3.5-5.0</td>
<td>1.25-1.75</td>
<td>0.65-0.9</td>
<td>Slightly high, too high for seedlings</td>
</tr>
<tr>
<td>5.0-6.0</td>
<td>1.75-2.25</td>
<td>0.9-1.1</td>
<td>Reduced growth, marginal burn</td>
</tr>
</tbody>
</table>

1 dS/m = 1 mmho/cm = 1 mS/cm
Relative salt tolerance

<table>
<thead>
<tr>
<th>Non Tolerant (0-2 dS/m)*</th>
<th>Slight Tolerant (2-4 dS/m)</th>
<th>Moderately Tolerant (4-8 dS/m)</th>
<th>Tolerant (8-16 dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carrot</td>
<td>Cabbage</td>
<td>broccoli</td>
<td>Swiss chard</td>
</tr>
<tr>
<td>onion</td>
<td>Celery</td>
<td>muskmelon</td>
<td>beet</td>
</tr>
<tr>
<td>Pea</td>
<td>Lettuce</td>
<td>spinach</td>
<td></td>
</tr>
<tr>
<td>radish</td>
<td>Pepper</td>
<td>Squash</td>
<td></td>
</tr>
<tr>
<td>Green bean</td>
<td>Sweet corn</td>
<td>tomato</td>
<td></td>
</tr>
<tr>
<td>potato</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*saturated paste extract

1 dS/m = 1 mmho/cm = 1 mS/cm; irrigation water should be <0.75 dS/m
Recommendations

- Do not add composts at greater than 1” per season
- Amendments with up to 10 dS/m salts OK if going into soil with less than 1 dS/m salt
- If soil has greater than 3 dS/m salt, avoid amendments with greater than 10 dS/m.
- Leach soils when levels climb
 - 6 inches of water reduces salts by 1/2
 - 12 inches water will reduce salts by about 4/5
 - 24 inches of water will reduce salts by 9/10
- Good drainage is essential
Nitrate Accumulation in Vegetables

- Under short days and low light intensity, photosynthesis reduced
- Reduction in energy restricts conversion of NO3 to amino acids
 - Reduced activity of nitrate reductase
- High soil nitrate levels correlated to high tissue levels
- Nitrate accumulation varies by species
 - Higher in spinach, lettuce, broccoli, cabbage, celery, radish, and beetroot.
 - Lower in carrots, cauliflower, snap beans, parsnips, peas and potatoes.
The Nitrate Dilemma

- Vegetables dominant source of nitrates in the diet (80-90%)

- Nitrate in the Body
 - Converted to nitrite, binds to hemoglobin to reduce blood oxygen levels (Methemoglobinemia)
 - Converted to nitrosamines in acid environment of stomach
 - Speculate cancerous compounds, but when eat with Vit. C, research shows decrease nitrosamine formation
 - Leafy vegetables have high Vit. C
 - Maximum daily intake = 220 mg for an 130 lb adult
 - 100 g of greens 2500 mg nitrate/kg= 250 mg nitrate

- However, increased consumption of fruits and vegetables associated with decreases in digestive tract cancers
 - Other antioxidants
 - Nitrate may have benefits - converted to nitric oxide in stomach, acts as antimicrobial on gut pathogens
Maximum Nitrate Levels (mg/NO3/kg) in Europe*

<table>
<thead>
<tr>
<th>Crop</th>
<th>Dates</th>
<th>Nitrate mg/NO3/kg FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Spinach</td>
<td>Nov 1 to March 31</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>Apr 1 to Oct 31</td>
<td>2500</td>
</tr>
<tr>
<td>Frozen Spinach</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Fresh Lettuce- Grown Under Cover</td>
<td>Oct 1 to March 31</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td>Apr 1 to Sept 30</td>
<td>3500</td>
</tr>
<tr>
<td>Fresh Lettuce- Grown in Open Field</td>
<td>Oct 1 to March 31</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>Apr 1 to Sept 30</td>
<td>2500</td>
</tr>
<tr>
<td>Iceberg Lettuce Under Cover</td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>Iceberg Lettuce Field</td>
<td></td>
<td>2000</td>
</tr>
</tbody>
</table>

*European Commission Regulation EC No. 563/2002
www.food.gov.uk/multimedia/pdfs/wpcc20036.pdf
Nitrate Conversion Units

<table>
<thead>
<tr>
<th>US EPA</th>
<th>Europe, CA</th>
<th>Chemical Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ppm Nitrate-N</td>
<td>4.5 ppm Nitrate</td>
<td>71 uM Nitrate</td>
</tr>
</tbody>
</table>

1 ppm nitrate-N = 1 mg Nitrate-N/liter = 4.5 mg Nitrate/liter = 71 uM Nitrate
1 ppm Nitrate = 0.22 ppm Nitrate N = 16 uM Nitrate
1 uM Nitrate = 0.014 uM Nitrate-N = 0.063 ppm Nitrate

Drinking water standard: 10 mg Nitrate-N/Liter or 50 mg Nitrate/liter
Nitrate Management

- Avoid excessive N applications
- Harvest in afternoon
 - After sunny day, nitrate in greens lower in some studies
 - Highest levels in early morning
 - Inconsistent research results about this practice
- Remove petioles (?)-highest nitrate content
- Maintain adequate moisture
- Watch leaf selection
 - Over mature or older leaves- higher level
 - Outer leaves higher than inner leaves
- Varieties show genetic variation in nitrate accumulation
- Accumulation increases with high temperatures and low light
Garden symphylan
Scutigerella immaculata (Newport),

- Small, white, centipede-like creatures, which are neither centipedes nor insects.
- Adults 1/4 inch long, soft-bodied creatures, with prominent antennae.
- Adults overwinter deep in soil.
- Lay eggs in upper 6 to 8 inches of soil.
- Symphylan nymphs will feed and develop for about 2 months in field.
 - Feed on roots and other underground portions.
 - Numerous tiny holes or pits on the roots, and roots hairs pruned and have a blunt appearance.
- Large populations (>50 per plant) can cause economic injury to crops.
Sampling and Biocontrol

- **Oregon State sampling guidelines:**
 - Take a square foot soil sample to a depth of 10 inches from several different sites (one site per 1.5 acre field).
 - Count the number of symphylans per sample and calculate an average number per sample. If more than 4 symphylans per sample is found, control may be required.

- **Cultural Control:**
 - Tillage breaks up root channels and reduces populations.
 - Flooding the field prior to planting may control.
 - Crabmeal fines being tested

- **Biological control:**
 - Not been well-studied.
 - *Pergamasus quisquiliarum*, appears to be an important mite predator (may consume up to 12 symphylans during one generation).
 - Pathogenic nematodes and soil bacteria may also infect